

FTMG-ESD15AXX

FTMg

CAPTEURS DE DÉBIT

EEE

Informations de commande

Туре	Référence		
FTMG-ESD15AXX	1100214		

Autres modèles d'appareil et accessoires → www.sick.com/FTMg

illustration non contractuelle

Caractéristiques techniques détaillées

Caractéristiques

Caracteristiques			
Principe de mesure	Calorimétrique (débit et température), piézorésistif (pression)		
Milieu	Air comprimé (qualité de l'air ISO 8573-1:2010 [3:4:4]), hélium, argon, azote, dioxyde de carbone		
Grandeurs de mesure	Masse, débit massique, Volumes, Débit volumique, énergie, vitesse d'écoulement, pression, température		
Diamètre nominal du tube de mesure	DN 15		
Plage de mesure			
Standard	5,3 l/min 1.060,3 l/min ¹⁾ 0,5 m/s 100 m/s ¹⁾		
Avancé	1.060,3 l/min 1.590,4 l/min $^{1)}$ 100 m/s 150 m/s $^{1)}$		
Température de process	-20 °C +60 °C		
Pression du process	0 bar 16 bar		
Interface de communication	MQTT OPC UA		
Mesure de la température	✓		
Mesure de la pression	√		
Affichage	✓ 128 x 128 pixels, écran OLED rotatifs par réglage (pas de 90°) et 4 touches		

 $^{^{1)}}$ Conditions de référence selon DIN 1343 (pression atmosphérique 1.013 mbar, température de l'air comprimé 0 $^{\circ}$ C).

Performance

Exactitude de mesure	
----------------------	--

¹⁾ Conditions de référence pour la mesure : conditions des fluides : air selon ISO 8573-1 :2010 [3:4:4] ou supérieur ; pression statique = 7 ± 0,2 bar (abs.) ; température moyenne 22 ± 3 °C ; distance de passage direct > 250 x DN ; filtre de lissage configurable par l'utilisateur : 10 secondes / conditions ambiantes : température ambiante de 15 °C à 25 °C ; pression ambiante : 1 013 mbar / valeur mesurée via l'interface numérique.

 $^{^{2)}}$ Si le débit \geq 10 % de la pleine échelle (plage de mesure standard).

³⁾ Analyse selon DIN EN 61298-2 best fit straight line.

Standard	\pm 3 % de la mesure + 0,3 % de la valeur finale de la plage de mesure (plage de mesure étendue) $^{1)}$		
Avancé	\pm 8 % de la mesure + 1 % de la valeur finale de la plage de mesure (plage de mesure étendue) $^{1)}$		
Répétabilité	\pm 1,5 % de la mesure $^{1)}$		
Temps de réponse	< 0,3 s		
Mesure de la température			
Précision de mesure (température)	± 2 °C ²⁾		
Répétabilité (température)	± 0,5 °C ²⁾		
Mesure de la pression			
Précision de mesure (pression)	± 1,5 % de la pleine échelle ³⁾		
Non-linéarité (pression)	\pm 0,5 % de la plage de mesure $^{3)}$		
Répétabilité (pression)	\pm 0,2 % de la plage de mesure $^{3)}$		

¹⁾ Conditions de référence pour la mesure : conditions des fluides : air selon ISO 8573-1 :2010 [3:4:4] ou supérieur ; pression statique = 7 ± 0,2 bar (abs.) ; température moyenne 22 ± 3 °C ; distance de passage direct > 250 x DN ; filtre de lissage configurable par l'utilisateur : 10 secondes / conditions ambiantes : température ambiante de 15 °C à 25 °C ; pression ambiante : 1 013 mbar / valeur mesurée via l'interface numérique.

Électrique

Puissance absorbée	< 5 W
Durée d'initialisation	≤ 10 s
Classe de protection	III
Mode de raccordement	Connecteur cylindrique M12 x 1, 8 pôles, codage X.
Signal de sortie	OPC UA, MQTT, serveur Web intégré
MTTF	> 100 années
Communication standard	IEEE802.3 Clause 25 (100BaseTx); 100 Mbit/sec
Alimentation standard	Power over Ethernet selon IEEE802.3af
Classe de puissance	Class 0; acc. IEEE802.3af Powered Device < 13 W
Mode d'alimentation électrique	Mode A et mode B

Mécanique

Raccord process	G ½ (selon DIN ISO 228-1)
Matériaux en contact avec la matière	Sonde : acier inoxydable 1.4305, PA6 ; joint : FKM (Viton®) ; canal de mesure : aluminium
Matériau du boîtier	PC+ABS, PA66+PA6I GF50, PC, TPE, acier inoxydable 1.4301
Indice de protection	IP65/IP67 (selon IEC 60529) 1)
Poids	Env. 805 g

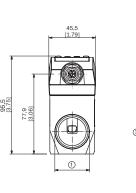
¹⁾ Non certifié UL.

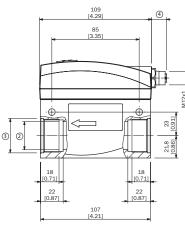
Caractéristiques ambiantes

Température de fonctionnement	-20 °C +60 °C ¹⁾
Température ambiante d'entreposage	-40 °C +85 °C

¹⁾ Conforme à l'homologation UL : degré de pollution 3 (UL61010-1 : 2012-05) ; humidité de l'air : 80 % pour des températures jusqu'à 31 °C ; altitude d'implantation : 3 000 m max. au-dessus du niveau de la mer.

 $^{^{2)}\,\}mathrm{Si}$ le débit \geq 10 % de la pleine échelle (plage de mesure standard).


 $^{^{}m 3)}$ Analyse selon DIN EN 61298-2 best fit straight line.


Classifications

eCl@ss 5.0	27200403
eCl@ss 5.1.4	27200403
eCl@ss 6.0	27200403
eCl@ss 6.2	27200403
eCl@ss 7.0	27200403
eCl@ss 8.0	27200403
eCl@ss 8.1	27200403
eCl@ss 9.0	27200403
eCl@ss 10.0	27200403
eCl@ss 11.0	27200403
eCl@ss 12.0	27200403
ETIM 5.0	EC002580
ETIM 6.0	EC002580
ETIM 7.0	EC002580
ETIM 8.0	EC002580
UNSPSC 16.0901	41112501

Plan coté (Dimensions en mm (inch))

DN15, DN20, DN25 ; unité de mesure : mm (inch), séparateur décimal : point

Туре	DN	1	2	3	4
FTMG-ISD15AXX	15	G 1/2	Ø 16.1	Ø 16.1	18.5
FTMG-ESD15AXX	15	G 1/2	Ø 16.1	Ø 16.1	13.4
FTMG-ISD20AXX	20	G 3/4	Ø 21.7	Ø 27.5	18.5
FTMG-ESD20AXX	20	G 3/4	Ø 21.7	Ø 27.5	13.4
FTMG-ISD25AXX	25	G 1	Ø 27.3	Ø 33.5	18.5
FTMG-ESD25AXX	25	G 1	Ø 27.3	Ø 33.5	13.4

SICK EN BREF

SICK est l'un des principaux fabricants de capteurs et de solutions de détection intelligents pour les applications industrielles. Notre gamme unique de produits et de services vous fournit tous les outils dont vous avez besoin pour la gestion sûre et efficace de vos processus, la protection des personnes contre les accidents et la prévention des dommages environnementaux.

Nous possédons une vaste expérience dans de nombreux secteurs et connaissons vos processus et vos exigences. Nous sommes en mesure de vous proposer les capteurs intelligents qui répondent parfaitement à vos besoins. Nos solutions systèmes sont testées et améliorées dans des centres d'application situés en Europe, en Asie et en Amérique du Nord afin de satisfaire pleinement nos clients. Cette rigueur a fait de notre entreprise un fournisseur et partenaire de développement fiable.

Nous proposons également une gamme complète de services : les SICK LifeTime Services vous accompagnent tout au long du cycle de vie de vos machines et vous garantissent sécurité et productivité.

C'est ainsi que nous concevons la détection intelligente.

DANS LE MONDE ENTIER, PRÈS DE CHEZ VOUS :

Interlocuteurs et autres sites sur → www.sick.com

